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Abstract

In this paper some results on the convergence of the Gauss–Seidel iteration when solving fluid/structure interaction

problems with strong coupling via fixed point iteration are presented. The flow-induced vibration of a flat plate aligned

with the flow direction at supersonic Mach number is studied. The precision of different predictor schemes and the

influence of the partitioned strong coupling on stability is discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Multidisciplinary and multiphysics coupled problems represent nowadays a paradigm when studying/
analyzing even more complex phenomena that appear in nature and in new technologies. There exists a great
number of problems where different physical processes (or models) converge, interacting in a strong or weak
fashion (e.g. acoustics/noise disturbances in flexible structures, magneto-hydrodynamics devices, micro-
electro-mechanical devices, thermo-mechanical problems like continuous casting process, fluid/structure
interaction (FSI) like wing flutter problem or flow-induced pipe vibrations). In the FSI area, the dynamic
interaction between an elastic structure and a compressible fluid has been the subject of intensive
investigations in the last years [1–3]. This paper concerns with the numerical integration of this type of
problems when they are coupled in a loose or strong manner.

For simple structural problems (like hinged rigid rods with one or two vibrational degrees of freedom) it is
possible to combine into a single (simple) formulation the fluid and the structural governing equations [4]. In
those cases, a fully explicit or fully implicit treatment of the coupled fluid/structure equations is attainable.
Nevertheless, for complex/large scale structural problems, the simultaneous solution of the fluid and structure
equations using a ‘monolithic’ scheme may be mathematically unmanageable or its implementation can be a
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.09.028

ing author.

esses: mstorti@intec.unl.edu.ar (M.A. Storti), nnigro@intec.unl.edu.ar (N.M. Nigro), rodrigop@intec.unl.edu.ar

cinl@intec.unl.edu.ar (L.D. Dalcı́n).
/www.cimec.org.ar

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.09.028
mailto:mstorti@intec.unl.edu.ar
mailto:nnigro@intec.unl.edu.ar
mailto:rodrigop@intec.unl.edu.ar
mailto:rodrigop@intec.unl.edu.ar
mailto:dalcinl@intec.unl.edu.ar
http://www.cimec.org.ar


ARTICLE IN PRESS
M.A. Storti et al. / Journal of Sound and Vibration 320 (2009) 859–877860
laborious task. Furthermore, the monolithic coupled formulation would change significantly if different fluid
and/or structure models were considered.

An efficient alternative is to solve each subproblem in a partitioned procedure where time and space
discretization methods could be different. Such a scheme simplifies explicit/implicit integration and it is in
favor of the use of different codes specialized on each subarea. In this work a staggered fluid/structure
coupling algorithm is considered. There exist various procedures how to couple the fluid and structure solvers:
the coupling conditions and the moving interface can be treated in a fully explicit or implicit or in a mixed
explicit/implicit manner. This approach allows a smooth transition between ‘loose’ and ‘strong’ coupling. For
stability reasons, often a fully implicit formulation has to be used [5]. In this approach, we have to solve a large
system of nonlinear equations with the use of the (iterative) solvers for the subsystems. Usually, this is done
with Block-Jacobi, Block-Gauss–Seidel or related relaxation methods [6,7]. A detailed description of the ‘state
of the art’ in the computational FSI area can be found in works [2,8–12] and the references therein. In this
work the Gauss–Seidel iteration approach is used and its convergence is studied for high speed flows.

Beyond the physical and engineering importance, this problem is interesting from the computational point
of view as a paradigm of multiphysics code implementation that reuses preexistent fluid and elastic solvers.
The partitioned algorithm is implemented in the PETSc-FEM code [13] which is a parallel multiphysics finite
element program based on the Message Passing Interface MPI and the Portable Extensible Toolkit for
Scientific Computations PETSc. Two instances of the PETSc-FEM code simulate each subproblem and
communicate interface forces and displacements via Standard C FIFO files or ‘pipes’. The key point in the
implementation of this partitioned scheme is the data exchange and synchronization between both parallel
processes. These tasks are made in a small external C++ routine.

2. Strongly coupled partitioned algorithm via fixed point iteration

In this section the temporal algorithm that performs the coupling between the structure and the fluid codes
is described. It is a fixed point iteration scheme over the states of both fluid and structure systems. Each
iteration of the loop is called a ‘stage’, so if the ‘stage loop’ converges, then a ‘strongly coupled’ algorithm is
obtained. Hereafter, this algorithm is called ‘staged algorithm’. The basic staggered procedure considered in
this work proceeds as follows: (i) transfer the motion of the wet boundary of the solid to the fluid problem,
(ii) update the position of the fluid boundary and the bulk fluid mesh accordingly, (iii) advance the fluid system
and compute new pressures (and the stress field if compressible Navier–Stokes model is adopted), (iv) convert
the new fluid pressure (and stress field) into a structural load, and (v) advance the structural system under the
flow loads. Such a staggered procedure, which can be treated as a weakly coupled solution algorithm, can also
be equipped with an outer loop in order to assure the convergence of the interaction process. The algorithm
can be stated as in Table 1, where, at time tn, we define wn to be the fluid state vector ðr; v; pÞ, un to be the
displacement vector (structure state vector), _un the structure velocities and Xn the fluid mesh node positions.
nstep is the number of time steps in the simulation, nstage the number of stages in the coupling scheme and nnwt

the number of Newton loops in the nonlinear problem. In the algorithm three programs are called CMD which
performs computation of the mesh dynamics, CSD which performs the computation for the structure dynamics
and CFD which performs the computation for the fluid dynamics. The structure of the scheme is given in
algorithm in Table 1.

2.1. Notes on the FSI algorithm

Two codes (CFD and CSD) are running simultaneously. For simplicity, the basic algorithm can be thought as
if there were no ‘concurrence’ between the codes, i.e. at a given time only one of them is running. This can be
controlled using ‘semaphores’ and this is done using MPI ‘synchronization messages’.

The most external loop is over the time steps. In this work, both fluid and structure partitions are integrated
with the trapezoidal rule (with trapezoidal parameter 0oatrapp1). Internal to the time step loop is the ‘stage

loop’. ‘Weak coupling’ is achieved if only one stage is performed (i.e. nstage ¼ 1). In each stage the fluid is first
advanced using the previously computed structure state un and the current estimate value unþ1;i. In this way, a
new estimate for the fluid state wnþ1;iþ1 is computed. Next the structure is updated using the forces of the fluid
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Table 1

Outline of FSI staged algorithm

1: Initialize variables:

2: for n ¼ 0 to nstep do f Main time step loop g

3: tn ¼ nDt,

4: f CFD CODE : g
5: Xn ¼ CMDðunÞ f run CMD code g

6: uðnþ1ÞP ¼ uðnþ1;0Þ ¼ predictorðun; un�1Þ f compute predictor g

7: i ¼ 0, nstage ¼ 0

8: repeat f ðstage loopÞ g

9: f CFD CODE : g
10: Xnþ1;iþ1 ¼ CMDðunþ1;iÞ

11: f Compute skin normals and velocities g

12: repeat f fluid Newton loop g

13: wnþ1;iþ1 ¼ CFDðwn;Xnþ1;iþ1;XnÞ

14: until convergence ðfluid Newton loopÞ

15: f CSD CODE : g
16: compute structural loads ðwn;wnþ1;iþ1Þ

17: repeat f structure Newton loop g

18: unþ1;iþ1 ¼ CSDðwn;wnþ1;iþ1Þ

19: until convergence ðstructure Newton loopÞ

20: i ¼ i þ 1, nstage ¼ i

21: until convergence ðstage loopÞ

22: end for
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from states wn and wnþ1;iþ1. At the first stage, the state unþ1;0 is predicted using a second or higher order
approximation (see Eq. (1)). Inside the stage loop there are Newton loops for each code to solve the
nonlinearities. In this application the ‘computational structure dynamics’ is linear, so nnwt ¼ 1. The stage loop
is iterated until convergence on both states is achieved.

Once the coordinates of the structure are known, the coordinates of the fluid mesh nodes are computed by a
‘computational mesh dynamics’ code, which is symbolized as

Xn ¼ CMDðunÞ.

Even though this step may be performed with a general strategy using both nodal reallocation or remeshing, in
this paper only the former is adopted, keeping the topology unchanged. Relocation of mesh nodes can be done
using an elastic or pseudo-elastic model [14] through a separate PETSc-FEM parallel process (code named
MESH-MOVE). For the simple geometry of the example in this paper a simple spine strategy is used.

The general form of the predictor for the structure state was taken from Ref. [2] and can be written as

uðnþ1ÞP ¼ un þ a0Dt_un þ a1Dtð_un � _un�1Þ. (1)

It is at least first-order accurate when no predictor is employed and it may be improved to second order using
the above predictor with some values for a0 and a1 according to the problem at hand (see Section 3.3.2 for a
discussion about this subject).

At the beginning of each fluid stage there is a computation of skin normals and velocities. This is
necessary due to the time dependent slip boundary condition for the inviscid case implemented as a constraint
(see Eq. (3)) or also in the case of using a non-slip boundary condition for the viscous case where the fluid
interface has the velocity of the moving solid wall, i.e. vjGg

¼ v̂jGg
¼ _ujGg

.

3. Description of test case

The flutter of a flat solid plate aligned with a gas flow at supersonic Mach numbers (see Fig. 1) is studied and
the critical Mach number is computed. It must be stressed that in this work we deal with both physical and
numerical instabilities. They are, in general, uncorrelated, i.e. a temporal integration scheme can be unstable
for a configuration of physical parameters that is well outside the flutter region and vice versa. This test is
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Fig. 1. Description of test.
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relevant because the onset of physical instabilities is very sensitive to the precision in the transfer of forces and
displacements. Afterwards (see Section 4) the stability of the numerical scheme will be assessed in a region far
from the physically unstable region (flutter) in order to be sure that if any instabilities are detected, they come
exclusively from the coupling process.

A uniform fluid at state ðr1;U1; p1Þ flows over an horizontal rigid wall y ¼ 0 parallel to it. This test case
has been studied also in Ref. [2]. In a certain region of the wall (0pxpL) the wall deforms elastically following
thin plate theory, i.e.

m €uþD
q4u
qx4
¼ �ðp� p1Þ þ f ðx; tÞ, (2)

where m is the mass of the plate per unit area in kg=m2, D ¼ Et3=12ð1� n2Þ the bending rigidity of the plate
module in Nm, E is the Young modulus in Pa, t the plate thickness in m, n the Poisson modulus, u the normal
deflection of the plate in m, defined on the region 0pxpL and null outside this region, p the pressure exerted
by the fluid on the plate in Pa, f is an external force in N and will be described later. The plate is clamped at
both ends, i.e. u ¼ ðqu=qxÞ ¼ 0 at x ¼ 0;L. For the sake of simplicity the fluid occupying the region y40 is
inviscid. The compressible Euler model with ‘streamline upwind Petrov Galerkin’ (SUPG) stabilization and
‘anisotropic shock-capturing’ method is considered [15]. A slip condition is assumed

ðv� vstrÞ � n̂ ¼ 0 (3)

on the (curved) wall y ¼ uðxÞ, where

vstr ¼ ð0; _uÞ,

n̂ / �
qu

qx
; 1

� �
(4)

are the velocity of the plate and its unit normal. Finally, initial conditions for both the fluid and the plate are
taken as

uðx; t ¼ 0Þ ¼ u0ðxÞ,

_uðx; t ¼ 0Þ ¼ _u0ðxÞ,

ðr; v; pÞX;t¼0 ¼ ðr; v; pÞ0 for yXu0ðxÞ. (5)

Note that for the fluid pressure load on the plate the free stream fluid pressure is subtracted so that in the
absence of any external perturbation (f ¼ 0) the undisturbed flow ðr; v; pÞx;t ¼ ðr; v; pÞ1 is a solution of the
problem for the initial conditions

u ¼ 0,
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_u ¼ 0,

ðr; v; pÞX;t¼0 ¼ ðr; v; pÞ1. (6)

3.1. Dimensionless parameters

As the fluid is inviscid, it is determined by the ‘adiabatic index’ g ¼ Cp=Cv ¼ 1:4 for air, and the Mach
number M1 ¼ U1=c1, where c1 is the speed of sound c ¼

ffiffiffiffiffiffiffiffiffiffi
gp=r

p
for the undisturbed state.

Another dimensionless parameter can be built by taking the ratio between the characteristic time of the fluid

which is T fl ¼ L=U1 and the characteristic time of the structure T str ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL4=D

q
. For practical reasons we

take the square of this ratio

NT ¼
T fl

T str

� �2

¼
D

mL2U2
1

. (7)

Finally, a (dimensionless) number can be formed by taking the ratio between the mass of the fluid being
displaced by the structure and the structure mass

NM ¼
r1L3

mL2
¼

r1L

m
. (8)

The same parameters as reported in Ref. [2] are considered. In this contribution, flutter was studied near the

point M1 ¼ 2:27, NT ¼ 4:3438� 10�5 and NM ¼ 0:054667. The flutter region was studied by varying the
M1 value while keeping r1 and the structure parameters (m;L;D) constant (so that NM constant and

NT /M�2
1 ), and the same approach is taken here. The dimensionless parameters are obtained by choosing the

following dimensional values:

r1 ¼ 1 kg=m3,

p1 ¼ 1=g ¼ 0:71429Pa,

U1 ¼M1 ðsince c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gp1=r1

p
¼ 1m=sÞ,

D ¼ 0:031611Nm,

m ¼ 36:585 kg=m2,

L ¼ 2m. (9)

3.2. Houbolt’s model

In this section the linear flutter instability by means of the modal analysis is studied. First, the ‘Houbolt

approximation’ [16] is assumed for the fluid,

p� p1 ¼ Cx

qu

qx
þ Ct

qu

qt
,

Cx ¼
r1U2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
1 � 1

q ,

Ct ¼
r1U1ðM

2
1 � 2Þ

ðM2
1 � 1Þ3=2

. (10)
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With this approximation the governing equation for plate deflection (Eq. (2)) becomes

m €uþD
q4u
qx4
¼ �Cx

qu

qx
� Ct

qu

qt
. (11)

3.2.1. Galerkin model for the finite length plate

The plate normal displacement is expanded in a global basis using

uðxÞ ¼
XN

k¼1

akckðxÞ,

ckðxÞ ¼
4xðL� xÞ

L2
sinðkpx=LÞ. (12)

These basis functions satisfy the essential boundary conditions for the plate equation u ¼ ðqu=qxÞ ¼ 0 at
x ¼ 0;L. Replacing the Houbolt approximation in Eq. (2), using Galerkin method and integrating by parts as
needed, the following matrix equation is obtained:

M€aþ KaþHxaþHt _a ¼ 0, (13)

where

Mjk ¼

Z L

0

mcjðxÞckðxÞdx,

Kjk ¼

Z L

0

Dc00j ðxÞc
00
kðxÞdx,

Hx;jk ¼

Z L

0

CxcjðxÞc
0
kðxÞdx,

Ht;jk ¼

Z L

0

CtcjðxÞckðxÞdx. (14)

Solution of these system of ODEs can be found by standard operational methods by replacing aðtÞ by the
ansatz

aðtÞ ¼ âelt (15)

leading to the eigenvalue equation

ðl2Mþ lHt þ KþHxÞâ ¼ 0. (16)

Flutter is detected whenever some eigenvalue l has a positive real part.

3.2.2. Numerical solution details

In order to determine the critical Mach number Mcr, the interval 1:8pMp3:0 was swept with an increment
of 0.01.

Regarding the convergence of series in Eq. (12), the critical Mach number Mcr remains constant within a
tolerance of 10�5 for NX10.

The quadratic eigenvalue problem of size N is solved by converting it to a linear eigenvalue problem of size
2N (and then finding eigenvalues and eigenvectors).

3.2.3. Results

Using for instance the values described in Eq. (9) with N ¼ 20 terms in the series, and varying Mach from
1.8 to 3 the results shown in Fig. 2 are obtained. For M1oMcr ¼ 2:265, all the eigenvalues have negative real
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Fig. 2. Lowest frequency mode for test case.
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part being stable. For M14Mcr ¼ 2:265 there are two complex conjugate roots with positive real part.
In Fig. 2 the real and imaginary part of the unstable mode are plotted. For M1oMcr ¼ 2:265 the eigenvalue
with the lower frequency was taken as a continuation of the flutter mode. It was checked that for M1oMcr ¼

2:265 the plate does positive power on the fluid, whereas for M14Mcr ¼ 2:265 the converse is true. The
instantaneous power done by the plate on the fluid is

P ¼

Z L

x¼0

p _udx. (17)

3.2.4. Flutter region

A large number of flutter computations in the space NM ;NT ;M1 were performed in order to determine the
flutter region. A grid of 20� 20 points in the region ½0:001pNMp0:1� � ½10�5pNT M2

1p10�3� was scanned.
For each point in the grid instability is scanned in the Mach region 1:8pM1p3. The flutter region has the
following form:

NM

NT M2
1

o200 no flutter for any Mach number,

NM

NT M2
1

4300 flutter for the lowest Mach number considered ðM1X1:8Þ. (18)

In the intermediate region flutter is produced. This suggests that flutter is highly correlated to quantity

NM

NT M2
1

¼
r1L3c21

D
(19)

which happens to be independent of the density of the plate.
A simple model presented in Ref. [4] draws a similar conclusion. The explanation is as follows. In that

reference, the term proportional to ðqu=qtÞ is neglected. This is true if the characteristic times of the structure
are much lower than those of the fluid, i.e. NT51. This is a valid assumption because of all points in the grid
located in the region NTo10�3 are considered. But if the temporal term in the Houbolt approximation is
neglected the characteristic equation can be written in the form

detðl̄
2
M̄þ KþHxÞ ¼ 0, (20)
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where

l̄ ¼
ffiffiffiffi
m
p

l,

M̄ ¼
1ffiffiffiffi
m
p M. (21)

As now the coefficients in M̄, K, Hx do not depend on m, neither do the eigenvalues of Eq. (20), and then by
Eq. (21) the l eigenvalues are of the form

lj ¼
l̄jffiffiffiffi
m
p , (22)

with l̄ not depending on m. This means that the sign of the real part of the l is independent of m.

3.3. FSI code results

The aeroelastic problem defined above was modeled with the strongly coupled partitioned algorithm
described in Section 2 with a mesh of 12 800 quadrilateral elements for the fluid and 5120 for the plate. As the
flow is supersonic only a small entry section of 1=8L upstream the plate and 1=3L downstream is considered.
The vertical size of the computational domain was chosen as 0:8L. It is assured that no reflection from the
upper boundary affects the plate itself when considering these sizes for the fluid domain.

3.3.1. Determination of flutter region

This section presents some results obtained with PETSc-FEM code using the weak coupling between fluid
and structure, i.e. nstage ¼ 1. The physical characteristics of the plate are the same as in previous section. In
order to find (numerically) the critical Mach number for this problem a sweep in the Mach number in the range
of 1.8–3.2 was done. Results for some Mach numbers can be seen in Figs. 3–8. In these plots the time evolution
of displacements of several points distributed along the skin plate are shown. The fluid density field and the
structure displacement at Mach ¼ 3:2 (flutter region) for a given time step is shown in Figs. 9 and 10.

For Mach numbers below the Mcr, Figs. 3–5, the maximum plate displacement grows until the forces
exerted by the fluid dump the plate displacements. The damping rate (measured for instance as the time needed
to reduce the amplitude by a given fixed factor, say 30%) grows with the Mach number. For Mach numbers
Fig. 3. Plate deflection in distributed points along plate at M ¼ 1:8.
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Fig. 4. Plate deflection in distributed points along plate at M ¼ 2:225.

Fig. 5. Plate deflection in distributed points along plate at M ¼ 2:25.
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near the Mcr, Fig. 6, the maximum amplitude grows slightly. The flutter mode is triggered at this point. For
Mach numbers above the Mcr, Figs. 7–10, the fluid forces cannot damp the structure response and
displacements grow without limit in an unstable fashion according to the theory.
3.3.2. Time accuracy

If the stage loop converges, i.e. ðu;wÞnþ1;i ! ðu;wÞnþ1;�, then it can be shown that the limit states ðu;wÞnþ1;�

satisfy the fully implicit, strong coupled equations. The main effect of the staged algorithm is to have a strong
coupling and then, enhanced stability, regardless the time accuracy. To understand how to specify the
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Fig. 6. Plate deflection in distributed points along plate at M ¼ 2:275.

Fig. 7. Plate deflection in distributed points along plate at M ¼ 2:3.
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parameters in Eq. (1) for predictors a simple two dofs wake oscillator model represented by two second-order
differential equations as follows:

mz €zþ cz _zþ kzz ¼ f zð €y; _y; y; tÞ,

my €yþ cy _yþ kyy ¼ f yð€z; _z; z; tÞ, (23)

with ðm; c; kÞ the mass, the damping and the stiffness parameters for each degree of freedom. In this simple
model, y; z represent the structure and fluid states in the CSD and CFD codes in algorithm in Table 1. The
forcing terms at the right hand side contain the coupling between the two blocks. This coupling may be
formulated in terms of the main variables and their two first derivatives, generally velocities and accelerations.
If the coupling contains only the main variables, i.e. f zðy; tÞ and f yðz; tÞ, the predictor with a0 ¼ 1 and a1 ¼ 0
achieves second-order accurate in time solutions. If the coupling contains velocities it is necessary to use a1 ¼ 1

2

to recover second order in time. In FSI problems solved via ALE it is known that the mesh velocity dependent
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Fig. 8. Plate deflection in distributed points along plate at M ¼ 3:2.
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Fig. 9. Fluid and structure fields at M ¼ 3:2. Colormap ¼ fluid density, time ¼ 1:46 s.
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of the fluid–solid interface velocity is incorporated in the formulation, therefore to guarantee second order in
time accuracy it is necessary to use a0 ¼ 1 and a1 ¼ 1

2
for the predictor.

Note that, if the Crank–Nicolson scheme is used for the time integration of both the structure and the fluid
equations and the predictor is chosen with at least second-order precision, then the whole algorithm is second
order, even if only one stage is performed see Ref. [17].

In Fig. 11 the error obtained after the simulation of a certain fixed amount of time t0 and increasing time
refinement is shown. The exact solution is estimated through a Richardson extrapolation with the two more
refined simulations for the more accurate scheme ðatrap ¼ 0:5Þ. The error at t0 is evaluated for a certain number
of different Dt values. It is verified that for atrap ¼ 0:6 the scheme is first-order accurate, whereas for atrap ¼ 0:5
precision is OðDt2Þ. When using atrap ¼ 0:5 with no predictor (Eq. (1)), a second-order convergence is still
obtained.
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Fig. 10. Fluid and structure fields at M ¼ 3:2. Colormap ¼ fluid density, time ¼ 1:68 s.

Fig. 11. Experimentally determined order of convergence with Dt for the uncoupled algorithm with fourth-order predictor.
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3.3.3. Convergence of stage loop

The convergence of the stage loops has been assessed by running the test case over 20 time steps and
performing 10 stages at each time step. In Fig. 12 the convergence of the fluid state (i.e. kunþ1;iþ1 � unþ1;ik) for
all the time steps (convergence curves of the time steps are concatenated) is shown. Analogously, the
convergence of the structure is plotted in Fig. 13. The average convergence is one order of magnitude per stage
or higher, suggesting that for such a situation a small nstage (2 or 3) would be enough.

3.3.4. Stability of the staged algorithm

The following numerical test allows to evaluate the stability of the staged algorithm presented in Section 2.
The example is similar to the aeroelastic test case presented in Section 3 with some different parameters for the
plate in order to produce larger plate deformations and stronger physical instabilities. Some parameters are
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Fig. 12. Convergence of fluid state in stage loop.

Fig. 13. Convergence of structure state in stage loop.
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similar to those presented in Eq. (9). Here, only the parameters that have been modified and the dimensionless
parameters that may be obtained with them are included.

U1 ¼M1 ¼ 2,
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t ¼ 0:06,

n ¼ 0:33,

m ¼ 0:002,

E ¼ 39:6,

D ¼ 8:0� 10�4,

NT ¼
D

mL2U2
1

¼ 0:025,

NM ¼
r1L

m
¼ 1000:0. (24)

Therefore according to Section 3.2.4

NM

NT M2
1

¼ 10 0004300 (25)

implies that the flow is inside the flutter region.
The following figures show results obtained with both strategies, the staged and non-staged algorithms.
The vertical displacements on some points of the plate for the staged algorithm using nstage ¼ 5 after

approximately 1300 time steps are shown in Fig. 14. The results for the non-staged algorithm diverge at 40
time steps and are shown in Fig. 15. The time step chosen for the non-staged algorithm was one-fifth of the
time step used with the staged one (i.e. Dtnon-staged ¼ Dtstaged=nstage). In this way the comparison of the stability
of the two strategies is performed at the same computational cost (assuming that the computational cost of a
stage in the staged algorithm is similar to the cost of a time step in the non-staged one).

Even though the staged algorithmic shows an extra stability compared with the non-staged one, the
conclusions about this numerical experiment are not obvious because the flow regime is in a flutter condition.
Fig. 14. Stability analysis—staged algorithm with nstage ¼ 5. Vertical displacements of the plate vs. time.
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Fig. 15. Stability analysis—non-staged algorithm. Vertical displacements of the plate vs. time.
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Further work needs to be done towards the understanding about how the staged algorithmic improves the
stability of the whole coupled problem.

4. Stability of the weak/strong staged coupling outside the flutter region

This section describes the stability properties of the weak coupling when the free stream conditions and
plate parameters are such that the oscillations due to flutter do not appear. The flutter region can be
characterized by the dimensionless number FL ¼ NM=NT M2

1 (see the previous section). Therefore, in order
to study the stability behavior of the weak/strong algorithms (nstage ¼ 1 and nstage41, respectively) intrinsic to
the physical coupling, the region FL5200 is studied, particularly FL ¼ 12 is chosen. This non-dimensional
number does not depend on plate density m. Then m can be varied in a wide range, seeking for instabilities of
the numerical integration scheme, avoiding the flutter region. The idea is to find a value for m for which the
weak coupling algorithm becomes unstable while the strong coupling and the uncoupled subproblems (fluid
and structure) remain stable. The tolerance for convergence of the non-linear loop (Newton iteration) was
10�5. The mesh is the same as in the previous simulations and the Courant number is CFL ¼ 0:5. The plate
mass density varies in the range m ¼ 35 and 0:0001. It was found that the critical value is m ¼ 0:65. The weak
coupling scheme is stable above this critical value, while instabilities are observed below it. Instabilities
disappear when the strong coupling scheme with nstage ¼ 2 is considered (see Figs. 16 and 17). Moreover, even
when a lower value of m is used, for instance m ¼ 0:0135 and CFL ¼ 1, only two stages are enough to achieve
convergence of the strong coupling algorithm. In the case of m ¼ 0:0001 a smaller CFL number is needed (e.g.
CFL ¼ 0:5) in order to have at least 15 time steps in one period (recall that the plate frequency depends on
plate density). In all cases, it was checked that each of the separated subsystems (fluid and structure) are stable
i.e. the instabilities are exclusively attributed to the weak coupling.

Even though the convergence of the coupled problem is not affected when considering a very small plate
density and a strong partitioned scheme, it is necessary to refine the fluid mesh in the normal direction to the
plate in order to have a better definition of the problem in that direction, i.e. a wave train is propagated in the
fluid with the plate frequency (recall that the plate frequency grows as the plate density decrease,
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Fig. 16. Unstable weak coupling for m ¼ 0:0135 and CFL ¼ 0:5.

Fig. 17. Stable staged coupling for m ¼ 0:0135, CFL ¼ 1 and nstage ¼ 2.
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ostr ¼ 2p=T str ¼ ½mL4=D��1=2). In the coupled simulation the interaction may produce the amplification of
the pressure and plate displacements. This fact can be shown in Figs. 18 and 19. Fig. 18 shows the plate
deflection when m ¼ 0:00135 and mesh size of the fluid mesh near the plate is hy ¼ 0:018808m and
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Fig. 18. Strong partitioned scheme in a coarse mesh.

Fig. 19. Strong partitioned scheme in a fine mesh.
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hx ¼ 0:035625m. Fig. 19 shows the same results when considering an homogeneous refinement (i.e. hy ¼

0:00932m and hx ¼ 0:01781m). The coarse mesh exhibit a spurious vibration mode similar to a flutter mode
that is corrected in the finer mesh.

Other researchers [11,12] have focused on the stability of the weak coupling algorithm for incompressible
flows. They rely on simplified models based on potential or very low Reynolds approximations and give
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estimates for the conditional stability of the weak coupled algorithm in terms of the physical parameters and
mesh sizes (structure and fluid). In this context, the aim of the present work is to shed some light on the
stability of the weak coupling strategy for more complex flow, namely the compressible supersonic regime.

5. Conclusions

Stability is enhanced through a strong coupling scheme and it shows to be necessary for situations where the
structural response is fast. Partitioned schemes using staged strong coupling shows to be very efficient
avoiding the tedious and problem dependent task of building a monolithic coupling formulation. For the
benchmark considered in this work two stages were enough for having the same behavior of the monolithic
scheme. Furthermore, the staged strategy provides a smooth blending between weak coupling and strong
coupling, i.e. moderately coupled problems that cannot be treated with the pure weak coupling approach, can
be solved with the staged algorithm using few stages per time step.

Time-accuracy shows to be in agreement with the accuracy of the underlying fluid and structure solvers, if
an accurate enough predictor is used. Second-order accuracy can be obtained with second-order fluid and
structure solvers, and one stage coupling with a high order predictor, as already reported in Ref. [2].

The elastic flat plate problem is geometrically simple, but gives physical insight in the flutter phenomena,
and was very useful in testing the proposed algorithm in a wide range of non-dimensional parameters.
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